LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

U.G. DEGREE EXAMINATION - ALLIED
 FIRST SEMESTER - NOVEMBER 2023
 UMT 1303 - MATHEMATICS FOR STATISTICS - I

Date: 09-11-2023
Time: 09:00 AM - 12:00 NOON
Max. : 100 Marks

SECTION A - K1 (CO1)	
	Answer ALL the Questions $\quad(10 \times 1=10)$
1.	Answer the following
a)	What is the product rule in differentiation?
b)	Define a critical point of a function.
c)	State Euler's theorem.
d)	Describe integration by parts.
e)	List any two applications of integral calculus.
2.	Fill in the blanks
a)	In implicit differentiation, differentiating both sides of an implicit equation with respect to the variable is the initial step.
b)	If the second derivative of a function is positive at a specific point, the function has a local at that point.
c)	The partial derivative of a function with respect to a variable means that the \qquad of the function concerning that variable.
d)	The integral of $\frac{1}{\sqrt{x}}$ with respect to x is
e)	The definite integral of $\frac{1}{x}$ from 1 to e is
	SECTION A - K2 (CO1)
	Answer ALL the Questions \quad (10 x 1 = 10)
3.	Choose the correct answer
a)	If $f(x)=\tan x$, what is $f^{\prime}(x)$? (i) $\cos ^{2} x$ (ii) $\sec ^{2} x$ (iii) $\cot x$ (iv) $\sin ^{2} x$
b)	Leibnitz theorem provides a formula to find (i) The $n^{\text {th }}$ derivative of a sum of two functions (ii) The $n^{\text {th }}$ derivative of a product of two functions (iii) The integral of a product of two functions (iv) The integral of a sum of two functions
c)	What is a partial differential equation? (i) An equation involving only partial derivatives of a function. (ii) An equation involving only ordinary derivatives of a function. (iii) An equation involving both partial and ordinary derivatives of a function. (iv) An equation involving only algebraic expressions.

d) Which of the following integrals represent integration of a rational algebraic function?
(i) $\int e^{x} d x$
(ii) $\int \frac{1}{x^{2}+1} d x$
(iii) $\int \frac{x^{2}+3 x-2}{x+1} d x$
(iv) $\int \sin x d x$
e) The value of the definite integral $\int_{0}^{\frac{\pi}{2}} \sin x d x$ is
(i) 0
(ii) 1
(iii) π
(iv) 2
4. State true or false
a) The derivative of a constant multiplied by a function $k . f(x)$ is $k . f^{\prime}(x)$.
b) If a function is concave downwards on an interval, then the second derivative is positive.
c) If a function $f(x, y)$ is independent of the variable y, then $\frac{\partial f}{\partial y}=y$
d) The integral of a function over an interval cannot be negative.
e) If $F(X)$ is an antiderivative of $f(x)$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

SECTION B - K3 (CO2)

Answer any TWO of the following

5. Apply Leibnitz theorem to compute $n^{\text {th }}$ derivative of $x^{2} e^{5 x}$.
6. Produce y_{n} when $y=\frac{3}{(x+1)(2 x-1)}$ by resolving into partial fractions.
7. \quad Determine $\int \frac{x^{24}}{x^{10}+1} \mathrm{dx}$.
8. Using partial fraction method, compute $\int \frac{2 d x}{(1-x)\left(1+x^{2}\right)}$

SECTION C - K4 (CO3)

Answer any TWO of the following

$(2 \times 10=20)$
9. Examine Euler's theorem when $u=x^{3}+y^{3}+z^{3}+3 x y z$.
10. Illustrate the theorem that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$ when u is equal to $\log \left(\frac{x^{2}+y^{2}}{x y}\right)$.
11. Test any three properties of definite integral.
12. Determine $\int \frac{d x}{(3+x) \sqrt{x}}$

SECTION D - K5 (CO4)

Answer any ONE of the following

$(1 \times 20=20)$
13.
(i)If $y=\sin \left(m \sin ^{-1} x\right)$, Defend that $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$.
(ii) Predict $n^{\text {th }}$ differential coefficient of $x^{2} \log x$.
14. (i) Evaluate $\int(3 x-2) \sqrt{x^{2}+x+1} d x$.
(ii) Compute $\int \frac{x+4}{6 x-7-x^{2}} d x$

SECTION E - K6 (CO5)

Answer any ONE of the following

$(1 \times 20=20)$
15. \quad Assess the maximum and minimum values of the function $2 x^{3}-3 x^{2}-36 x+10$.
16. (i) Compile reduction formula for $\int \cos ^{n} x d x$ and hence evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{8} x d x$.
(ii) Test that $\int_{0}^{\frac{\pi}{2}} \frac{(\sin x)^{\frac{3}{2}}}{(\sin x)^{\frac{3}{2}}+(\cos x)^{\frac{3}{2}}} d x=\frac{\pi}{4}$ (10 marks)

